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Abstract 

 
In this study, we have established a new distribution by using the Lindley generating family with baseline distribution as Chen 

distribution called Lindley-Chen (LC) distribution. We have illustrated some statistical properties of the model including the shapes 

of the probability density function (PDF), cumulative density function (CDF) and hazard rate function (HRF), quantile function also 

the skewness, kurtosis are discussed. We have employed three well-known estimation methods to estimate the model parameters 

namely the maximum likelihood estimation (MLE), least-square estimation (LSE), and Cramer-Von-Mises (CVM) methods. We 

discuss maximum likelihood estimation of the distribution parameters and asymptotic confidence interval based on maximum 

likelihood. All the computations are performed in R software. The application of the model to a real data set is investigated and 

finally, we compared the goodness of fit attained by observed model via different estimation methods and we have compared with 

some other lifetime models. 
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1. Introduction 
 

Most of the continuous probability distributions have been generated in recent decades but the real date sets 

related to engineering, finance, climatology, medicine, geology, biology, hydrology, ecology, reliability, life testing, 

and risk analysis do not provide a better fit to these distributions. So, the creation of new modified distributions seems 

to be necessary to address the problems in these fields. The generalized, extended, and modified distributions are 

created by adding one or more parameters or performing some transformation to the baseline distribution. Therefore, 

the new proposed distributions provide the best fit compared to the sub and competing models. 

[1] has proposed a new two-parameter lifetime distribution with bathtub shaped or increasing failure rate (IFR) 

function. The cumulative distribution function (CDF) of Chen distribution is  

 

  ( ) 1 exp[ (1 )];  , 0,  0xG x e x


        (1.1) 

And its probability density function (PDF) is 

 
1( ) exp[ (1 )];  , 0,  0x xf x x e e x

         (1.2) 

The motivation to extend the Chen distribution is to introduce a flexible model that has revealed the various shapes of 

the hazard and density functions. [2] has introduced the Markov Chain Monte Carlo methods for Bayesian inference of 

the Chen model.  [3] have introduced the extended Chen (EC) distribution is derived from the generalized Burr-Hatke 

differential equation and nexus between the exponential and gamma variables. [4] introduced a new lifetime distribution 

with increasing, decreasing and bathtub-shaped hazard rate function which is constructed by the compounding of the 

Weibull and Chen distributions and is called Weibull–Chen (WC) distribution.  

………………………… 
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The one parameter Lindley distribution was developed by [5] in the context of Bayesian statistics, as a 

counterexample to fiducial statistics. In recent years, many studies have been focused to obtain various modified forms 
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of the baseline distribution using Lindley family presented by [6] with more flexible density and hazard rate functions. 

A detailed study on the Lindley distribution was done by [7]. 

 A random variable X follows Lindley distribution with parameter λ and its probability density function (PDF) 

is given by 

 

    
2

1 ;  x 0, 0
1

xf x x e 




   


         (1.3) 

 

And its cumulative density function (CDF) is 

 

  
1

1 ;  x 0, 0
1

xx
F x e  




 
   


   (1.4) 

   

Some of the modifications has made by [8] in the literature of Lindley distribution, which is quite similar to the 

exponential distribution. [9] investigated the estimation of the parameters using hybrid censored data. The estimation of 

the model parameters for censored samples by [10] and this distribution was applied by [11] to calculate competing 

risks in lifetime data.  

  

In the theoretical distribution, [12] has introduced weighted Lindley distribution having two parameters and 

has shown that it is appropriate in modeling biological data for a mortality study. [13] has presented generalized 

Lindley, extended Lindley by [14], [15] for exponentiated power Lindley, [16] Lindley–Exponential distribution. 

 Also, we observed some continuous-discrete mixed approaches as [17] has defined the discrete Poisson-

Lindley.  [18] have introduced negative binomial Lindley distribution, the Pareto Poisson Lindley distribution by [19].  

[20] has presented a new class of distributions to generate new distribution based on Lindley generator 

(Lindley-G) having additional shape parameter θ. The CDF and PDF of Li-G are respectively, 

      ; , 1 1 ; 1 ln ; ;  0, 0
1

F G G
 

        


 
          

 (1.5) 

and         
2

1

; , ; 1 ; 1 ln ; ;  0, 0
1

f g G G


          



         

 (1.6) 

        

where   
 ;

;
dG

g
d

 
 


 ,    ; 1 ;G G      

The main objective of this work is to introduce a more flexible model by adding just one extra parameter to the Chen 

distribution to achieve a better fit to real data. We explore the properties of the L–C distribution and its applicability.  

The arrangements of the contents of the proposed study are as follows. The Lindley Chen distribution is 

introduced and various mathematical and statistical properties are discussed in Section 2. We have employed three well-

known estimation methods to estimate the model parameters namely the maximum likelihood estimation (MLE), least-

square estimation (LSE) and Cramer-Von-Mises (CVM) methods. For the maximum likelihood estimation (MLE) 

procedure we have discussed the associated confidence intervals using the observed information matrix in Section 3. In 

Section 4, a real data set has been analyzed to explore the applications and suitability of the proposed distribution. In 

this section, we have illustrated the maximum likelihood (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) 

estimates and also we have constructed the approximate confidence intervals for MLEs. Finally, in Section 5 we have 

presented some concluding remarks. 

 

2. The Lindley Chen Distribution (L-C)  
 

Taking (1.1) as a CDF of baseline distribution  ;G   and (1.2) as PDF  ;g   , then (1.5) and (1.6) 

becomes 

    ( ) 1 1 1 exp 1 ;  , , 0,  0
1

x xF x e e x
 

    


                
 (2.1) 

and  
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      
2

1( ) 1 1 exp 1 ;  , , 0,  0
1

x x xf x x e e e x
  

     


 
      

 
 (2.2) 

respectively are the CDF and PDF of new purposed Lindley-Chen distribution. 

2.1. Reliability/Survival function 

The Reliability/Survival function of L-C distribution is   

 ( ) 1 ( )R x F x   

                1 1 exp 1 ;  , , 0,  0
1

x xe e x
 

    


               
 (2.3) 

2.2. Hazard function  

Suppose that  x be survival time of an item and we desire the probability that it will not survive for an additional time dx  

then, hazard rate function is, 

 

  
 

 

lim ( ) ( )
;  0

0 . ( ) 1 ( )

f xpr x X x dx f x
h x x

dx dx R x R x F x

  
     

 
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 
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1 1

;   0
1 1

x x

x

x e e
x

e

 



 


  

  
 

  
 (2.4) 

We have plotted the graph of the probability density function and hazard function of L-C distribution in Figure 1. It is 

found that the shapes of the Lindley Chen (L-C) density are arc, J-shaped, reverse J-shaped, negative-skewed, positive-

skewed and symmetrical. The hazard rate function (HRF) for the L-C distribution is also flexible due to its various 

shapes such as increasing, decreasing, decreasing–increasing, increasing–decreasing and bathtub.  

  
Figure 1. Graph of PDF (left panel) and hazard function (right panel) for λ = 1 and different values of α and θ. 

 

2.3. Quantile function of L-C distribution 

In probability and statistics, the quantile function, associated with a probability distribution of a random variable, 

specifies the value of the random variable such that the probability of the variable being less than or equal to that value 

equals the given probability. It is also called the percent-point function or inverse cumulative distribution function. 

    1Q p F p  

The quantile function is 

    1 1 1 exp 1 0 ; 0< 1
1

x xp e e p
 

 


                
  (2.5) 

For the generation of the random numbers of the L-C distribution, we suppose simulating values of random variable X 

with the CDF (2.1). Let B denote a uniform random variable in (0,1), then the simulated values of X are obtained by 

setting, 
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    1 1 1 exp 1 0,   0 1
1

x xb e e b
 

 


                 
 (2.6) 

and solving for x. 

 2.4. Skewness and Kurtosis  

These measures are used mostly in data analysis to study the shape of the distribution or data set. Skewness and 

Kurtosis based on quantile function are 

  
     

   

0.75 0.25 2 0.5
,

0.75 0.25
k

Q Q Q
S B

Q Q

 



 and 

Coefficient of kurtosis based on octiles given by [21] is 

  
       

   

0.875 0.625 0.375 0.125

3 / 4 1/ 4
u

Q Q Q Q
K Moors

Q Q

  



 

3. Methods of Estimation  
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured 

empirical data that has a random component. The parameters describe an underlying physical setting in such a way that 

their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters 

using the measurements. Commonly used estimators (estimation methods) are listed blew,  

i. Maximum likelihood estimators (MLE) 

ii. Bayes estimators 

iii. Method of moments estimators 

iv. Cramer-von Mises estimator (CVM) 

v. The maximum product of spacings (MPS) method 

vi. Cramér–Rao bound 

vii. Least-squares estimators (LSE) 

viii. Minimum mean squared error (MMSE), also known as Bayes least squared error (BLSE) 

ix. Markov chain Monte Carlo (MCMC) 

 

We have considered different estimation procedures for the unknown parameters of the L-C distribution. We introduce 

three types of estimators such as the maximum likelihood (MLE), ordinary least squares (LSE), Cramer-von Mises 

(CVM) estimators. 

 

3.1. Maximum Likelihood Estimation (MLE) 

In this section, we discuss the maximum likelihood estimators (MLE's) of the L-C distribution. 

Let x̠ = (x1,…..,xn) be a random sample of size „n‟ from L-C(α, λ, θ), then the likelihood function L(α, λ, θ/ x̠) can be 

written as, 

        
2

1

1

, , | 1 1 exp 1
1

i i i

n
x x x

i

L x x e e e
  

     






 
    

 
  (3.1) 

Log-likelihood density of (3.1) is 

   
1 1 1 1

, , | 2 ln ln(1 ) ln ln ( 1) ln (1 ) ln 1 (1 )i i

n n n n
x x

i i

i i i i

l x n n n n x x e e
          

   

                (3.2) 

By differentiating  , , |l x    with respect to parameters and equating to zero and solving them then we obtained 

maximum likelihood estimators of the model. 

1 1 1 1

ln ln ln ln 0
1 (1 )

i

i

i

xn n n n
x i

i i i i i x
i i i i

x el n
x x x e x x

e








   

     


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  
     

1 1

(1 )
(1 ) 0
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i

i

i
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x

x
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l n e
e

e




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 
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   

1

2
(1 ) 0

1
i

n
x

i

l n n
e




   


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 
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Manually it is not possible to solve these nonlinear equations so we can use iterative techniques such as the Newton-

Raphson algorithm to calculate the estimated value of the parameters. The Optim() function in R software can be used 

to solve them numerically. 

Let us denote the parameter vector by ( , , )    and the corresponding MLE of   as ˆ ˆˆ ˆ( , , )    , then the 

asymptotic normality results in,     
1

3
ˆ 0,N I  

  
  

 where  I   is the Fisher‟s information matrix 

given by, 

  

2 2 2

2

2 2 2

2

2 2 2

2

l l l
E E E

l l l
I E E E

l l l
E E E

    


    

    

        
      

          
        
        

          
 

        
                

 

In practice, it is useless that the MLE has asymptotic variance   
1

I 


because we don‟t know  . Hence we 

approximate the asymptotic variance by plugging in the estimated value of the parameters. 

The common procedure is to use observed fisher information matrix O(̂ ) as an estimate of the information matrix 

 I   given by 
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   
      

 

Where H is the Hessian matrix. 

The Newton-Raphson algorithm to maximize the likelihood produces the observed information matrix. Therefore, the 

variance-covariance matrix is given by, 

  
 ˆ

1

|

ˆ ˆˆ ˆ ˆvar( ) cov( , ) cov( , )

ˆ ˆ ˆ ˆˆcov( , ) var( ) cov( , )

ˆ ˆ ˆ ˆˆcov( , ) cov( , ) var( )

H
 

    

     

    



 
  

    
  
 
 

 

Hence from the asymptotic normality of MLEs, approximate 100(1-α) % confidence intervals for α, λ, θ can be 

constructed as, 

 /2
ˆ ˆ( )Z SE   , /2

ˆ ˆ( )Z SE   and /2
ˆ ˆ( )Z SE  ,  

where /2Z is the upper percentile of standard normal variate. 

 

3.2. Method of Least-Square Estimation (LSE) 

 

The least-square estimators and weighted least square estimators were proposed by [22] to estimate the parameters of 

Beta distributions. In this article, the same technique is applied to the L-C distribution. The least-square estimators of 

the unknown parameters α, λ, and θ of L-C distribution can be obtained by minimizing  

  
2

1

; , , ( )
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j

j
X G X

n
  



 
    

   (3.2.1) 

with respect to unknown parameters α, λ, and θ. 

 

Suppose ( )( )jX denotes the distribution function of the ordered random variables

     1 2 n
X  X  ..  X    , where 1 2 nX ,X ,  ..,X  is a random sample of size n from a distribution 

function G(.). Here, the least square estimators of α, λ, and θ say ˆ , ̂  and ̂  respectively, can be obtained by 

minimizing 
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  (3.2.2) 

 

with respect to α, λ, and θ. 

Let  exp 1 jx
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

  
  

 and  1 jx

jV e


   then after differentiation with respect to α, λ, and θ we get the 

three nonlinear equations as 
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The weighted least square estimators of the unknown parameters can be obtained by minimizing 

  

  
2

1

; , , ( )
1

n

j j

j

j
X w G X

n
  



 
    

  

with respect to α, λ, and λ. The weights wj are 
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Hence, the weighted least square estimators of α, λ, and θ respectively, can be obtained by minimizing, 
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 (3.2.3) 

with respect to α, λ, and θ. 

 

 

3.3. Method of Cramer-Von-Mises (CVM) 

 

We interested in Cramér-von-Mises type minimum distance estimators [23] because it provides empirical 

evidence that the bias of the estimator is smaller than the other minimum distance estimators. The CVM estimators of α, 

λ, and θ are obtained by minimizing the function 
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   then after differentiation with respect to α, λ, and θ we get the 

three nonlinear equations as 

 

  
2

1

2 1
2 1 1 ln( )exp 1

1 1 2

j

n
x

j j j j j j

j

C i
V U x x V x e

n


  

    
  

     
                 

  

 

  
1

2 1
2 1 1

1 1 2

j

n
x

j j j j

j

C i
U V V U e

n

 
    

  

     
             

  

 

 
  2 2

2
1

2
1 1 1 1

1 11

n

j j j j j

j

C j
U V V U V V

n

 
   

  

    
                

  

Equating them to zero and solving simultaneously we get CVM estimators. 

 

http://www.ijmra.us/


 ISSN: 2320-0294 Impact Factor: 6.765  

19 International Journal of Engineering, Science and Mathematics 

http://www.ijmra.us, Email: editorijmie@gmail.com 

 

4. Real Data Analysis and Result 
In this section, we fit our model on the data of tensile strength of 65 observations of failure stresses of single carbon 

fibers of length 50 mm. The data were also used by [24] and later discussed in [25]. The data were as follows 

1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764, 1.807, 1.812, 1.84, 1.852, 1.852, 1.862, 1.864, 1.931, 

1.952, 1.974, 2.019, 2.051, 2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172, 2.18, 2.194, 2.211, 2.27, 2.272, 2.28, 2.299, 

2.308, 2.335, 2.349, 2.356, 2.386, 2.39, 2.41, 2.43, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577,  2.593, 2.601, 2.604, 

2.62, 2.633, 2.67, 2.682, 2.699, 2.705, 2.735, 2.785, 3.02, 3.042, 3.116, 3.174 

 By using the likelihood function in (3.2), we have computed the maximum likelihood estimates directly by using [26]. 

From the above data set, we have obtained ̂ = 1.2681, ̂ = 28.9639 and ̂ = 0.00355 corresponding Log-Likelihood 

value is -37.0209. In Table 1 we have demonstrated the MLE‟s with their standard errors (SE) and 95% confidence 

interval for α, λ and θ. 

Table 1. MLE, SE and 95% confidence interval 

Parameter MLE SE 95% ACI 

Alpha 1.2681 0.05867   (1.1532, 1.3831) 

Lambda 28.9639 5.157 (18.8562, 39.0716) 

Theta 0.00355   0.00096    (0.00167, 0.00543) 

 

The Profile log-likelihood functions of parameters α, λ and θ are displayed in Figure 2. It is revealed that the estimated 

parameters using the MLE method are unique.  

 
Figure 2. Profile log-likelihood functions of α, λ and θ. 

 

Table 2. Estimated parameters, log-likelihood, AIC, BIC and AICC 

Method ̂  ̂  ̂  -LL AIC BIC AICC 

MLE 1.2681 1.2681 1.2681 37.0209 80.0418 86.5649 80.4352 

LSE 1.2897 1.3012 1.4891 37.2314 80.3251 86.5901 80.5028 

CVE 1.362 1.2901 2.5220 37.5241 80.1328 86.5887 80.5422 

 

To assess the goodness of fit of any distribution we used to plot the graphs of PDF and CDF respectively. To 

know more about the nature of the distribution we have to plot Q-Q and P-P plots. In particular, the Q-Q plot is used 

widely it provides more information about the lack-of-fit at the tails of the distribution, whereas the P-P plot emphasizes 

the lack-of-fit.  In Figure 3 we have presented the graph of Q-Q and CDF of L-C distribution. From Figure 3 it is proven 

that the L-C model fits the data properly. 
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Figure 3. The graph of the Q-Q plot (left panel) and CDF plot (right panel). 

 

To illustrate the goodness of fit of the Lindley inverse Weibull distribution, we have taken some well known 

distribution for comparison purpose which are listed blew, 

I. Gompertz distribution (GZ): 

The probability density function of Gompertz distribution [27] with parameters α and θ is 

   1 0 0x x
GZf x e exp e ;x , , . 

  


 
        

 
 

II. Exponential power (EP) distribution: 

The probability density function Exponential power (EP) distribution [28] is 

   1( ) exp 1 ; ( , ) 0, 0
x x

EPf x x e e x
 

       
    

 
. 

where α and λ are the shape and scale parameters, respectively. 

 

III. Chen distribution: 

[1] has introduced Chain distribution having probability density function (PDF) as  

   1 1 0 0x xf x; , x e exp e ; ( , ) , x
         

     
  

. 

IV. The inverse Weibull (IW) distribution 

 

The probability density function (PDF) of a random variable X of IW [29] is given by 

    ( 1) exp ;   0,  0,  0g x x x x            

For the evaluation of potentiality of the LC distribution, we have calculated the Akaike information criterion (AIC), 

Bayesian information criterion (BIC), Corrected Akaike information criterion (CAIC) and Hannan-Quinn information 

criterion (HQIC) which are presented in Table 3.  

Table 3. Log-likelihood (LL), AIC, BIC, CAIC and HQIC 

Model -LL AIC BIC CAIC HQIC 

LC 37.0209 80.0418 86.5649 80.4352 82.6156 

Gompertz 38.9102 81.8205 86.1692 82.0140 83.5363 

EP 38.9455 81.8909 86.2397 82.0784 83.6068 

Chen 40.5975 85.1949 89.5437 85.3885 86.9108 

IW 43.8600 91.7200 96.0688 91.9136 93.4359 
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The Histogram and the density function of fitted distributions and Empirical distribution functions with estimated 

distribution function of LC distribution and some selected distributions are presented in Figure 4. 

 

 
Figure 4. The Histogram and the density function of fitted distributions (left panel) and Empirical distribution 

function with estimated distribution function (right panel). 

 

To compare the goodness-of-fit of the LC distribution with other competing distributions we have presented the value 

of Kolmogorov-Simnorov (KS), the Anderson-Darling (AD) and the Cramer-Von Mises (CVM) statistics in Table 4. It 

is observed that the LC distribution has the minimum value of the test statistic and higher p-value thus we conclude that 

the LC distribution gets quite better fit and more consistent and reliable results as compared to others. 

 

Table 4. The goodness-of-fit statistics and their corresponding p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

LC  0.0571(0.9838)  0.0432(0.9172)  0.4653(0.7817)   

Gompertz  0.0697(0.9107)  0.0799(0.6940)  0.7486(0.5191)  

EP  0.0807(0.7910)  0.1202(0.4957)  0.9623(0.3773)  

Chen  0.0911(0.6540)  0.1141(0.5213)  1.0414(0.3360)  

IW  0.1250(0.2618)  0.2653(0.1699)  1.6798(0.1389)  

 

5. Conclusions 
We have introduced a new three-parameter Lindley Chen (L-C) distribution, which is the extension of the 

Chen distribution. Actually, the L-C distribution is motivated by the extensive use of the Chen distribution in many 

applied fields and further its generalization provides more flexibility in the analysis of real data. We have provided the 

PDF, the CDF, and the shapes of the hazard function. The shape of the probability density function of the L-C 

distribution is unimodel and positively skewed, while the hazard function of the L-C distribution is increasing, 

decreasing, decreasing–increasing, increasing–decreasing and bathtub. We have employed three well-known estimation 

methods to estimate the model parameters namely the maximum likelihood estimation (MLE), least-square estimation 

(LSE) and Cramer-Von-Mises (CVM) methods. Finally, a real data set is used to investigate the applicability of the 

proposed model. It is concluded that the proposed model is more flexible and provide a better fit for survival data as 

compared to some other models. 
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